Withanolides from Withania adpressa

by Lalla Hasna Abdeljebbar^a)^b), Munir Humam^c), Philippe Christen^{*c}), Damien Jeannerat^d), Bruno Vitorge^d), Saaid Amzazi^a), Abdelaziz Benjouad^a), Kurt Hostettmann^c), and Khalid Bekkouche^b)

^a) Laboratoire de Biochimie-Immunologie, Faculté des Sciences, Département de Biologie, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco

^b) Laboratoire Biotechnologies, Protection et Valorisation des Ressources Végétales, Groupe Phytochimie et Pharmacologie des Plantes Aromatiques et Médicinales, Faculté des Sciences-Semlalia, BP, 2390, Marrakech, Morocco

^c) Laboratory of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4

(phone: +41-22-3796561; fax: +41-22-3793399; e-mail: philippe.christen@pharm.unige.ch)

^d) Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4

From the leaves of *Withania adpressa*, a plant endemic to Sahara of Morocco and Algeria, the novel steroidal lactone (22R)-14 α ,15 α ,17 β ,20 β -tetrahydroxy-1-oxowitha-2,5,24-trien-26,22-olide (=(15*S*,17*S*)-14,15,17,20-tetrahydroxy-22,26-epoxyergosta-2,5,24-triene-1,26-dione; **1**), was isolated, along with three known compounds, withanolides F (**2**), J (**3**), and oleanolic acid. Their structures were mainly solved by in-depth 1D- and 2D-NMR (including ADEQUATE) experiments, as well as by HR-MS analyses and chemical evidence.

Introduction. – The genus *Withania* (Solanaceae) is known for elaborating withanolides, which are steroidal lactones characterized by a C_{28} basic skeleton. Several of these substances have displayed various biological activities, such as cytotoxic [1], anticancer [2], immunosuppressive [3], adaptogenic [4], and antifeedant [5] properties. In Morocco, the genus *Withania* is represented by three species: *W. somnifera* (L.) DUNAL, *W. adpressa* Coss., and *W. frutescens* (L.) PAUQUY [6]. *W. adpressa* is a greengrayish shrub, with coriaceous, glaucous leaves; it is endemic to Sahara of Morocco and Algeria [7].

According to the literature, *W. adpressa* has not previously been studied phytochemically. The present investigation describes the isolation and structural elucidation of a new withanolide, identified as (22R)-14 α ,15 α ,17 β ,20 β -tetrahydroxy-1-oxowitha-2,5,24-triene-26,22-olide (=(15*S*,17*S*)-22,26-epoxy-14,15,17,20-tetrahydroxyergosta-2,5,24-triene-1,26-dione; **1**). This new compound was isolated together with withanolide F (**2**), withanolide J (**3**), and oleanolic acid from the leaves of the title plant.

Results and Discussion. – Compound **1** was obtained as a colorless solid. Its molecular formula, $C_{28}H_{38}O_7$, was deduced from the quasi-molecular ion peak at m/z 509.2517 ($[M+Na]^+$) by means of high-resolution electrospray-ionization time-of-flight mass spectrometry (HR-ESI-TOF-MS). Liquid-chromatography ion-trap mass spectrometry (LC/IT-MS) showed the pseudo-molecular ion at m/z 504.0

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

 $([M+H_2O]^+)$, with a fragment ion at 169.2 (C₉H₁₃O₃) due to cleavage of the C(17)– C(20) bond, confirming the presence of one OH group as well as a six-membered lactone substituted at C(20) of the steroidal skeleton. The second moiety of the molecule, after loosing an OH group, gave rise to the base peak at m/z 300.9. The most-prominent ions were due to the gradual loss of four molecules of H₂O: m/z 486.0, 468.8, 451.4, 433.1, and 283.3, confirming the presence of four OH groups.

The UV spectrum of **1** showed a strong absorption at λ_{max} 222 nm, characteristic of α,β -unsaturated C=O and α,β -unsaturated lactone chromophores [8]. The IR absorbances at 3416, 1685, and 1660 cm⁻¹ suggested the presence of OH groups, a six-membered cyclic ketone, and an α,β -unsaturated lactone, respectively [9].

The ¹H-NMR spectrum of **1** (*Table*) showed five Me *singlets* at δ (H) 1.15, 1.22 (2 Me), 1.75, and 1.88. The appearance of Me(21) as a *singlet* was a strong indication that the neighboring C(20) was a quaternary C-atom, and the appearance of C(21) at low field (δ (C) 1.22) confirmed that an OH group was present at C(20). The downfield shift of Me(27) and Me(28) in the ¹H-NMR spectrum suggested the presence of a C=C bond between C(24) and C(25), *i.e.*, the presence of an α , β -unsaturated lactone [10]. H–C(22) coupled only with CH₂(23), and appeared at δ (H) 4.68 (*dd*, J(22,23a)=12.7, J(22,23b)=3.2 Hz). H_a–C(23) coupled with H_b–C(23) (16.0 Hz) and with H–C(22) (12.7 Hz), and appeared as a broad *doublet*; and H_b–C(23), coupling with H_a–C(23) (16.0 Hz) and H–C(22) (3.2 Hz), appeared as a *multiplet*.

Three downfield signals at $\delta(H)$ 5.76 (*dd*, J(2,3) = 9.8, J(2,4a) = 2.0 Hz), 6.88 (*ddd*, J(3,2) = 9.8, J(3,4b) = 4.7, J(3,4a) = 2.4 Hz), and 5.57 (d, J(6,7a) = 5.2 Hz) represented three vinylic H-atoms, H-C(2), H-C(3), and H-C(6), respectively. The chemical shift of Me(18) (δ (H) 1.22) was consistent with the presence of OH groups at positions 17β and/or 14β . The quaternary ¹³C-NMR carbon signals at δ (C) 82.1 and 88.0, assigned to C(14) and C(17), respectively, confirmed a 14β , 17β -diol structure. The ¹³C-NMR (DEPT) spectrum of 1 indicated the presence of 28 C-atoms, including five Me, six CH₂, and seven CH groups, as well as ten quaternary C-atoms. The lowfield signals at $\delta(C)$ 203.1 and 165.9 were due to ketone and lactone C=O groups, respectively. The signals at $\delta(C)$ 127.0, 146.4, and 125.1 were attributed to three vinylic C-atoms, C(2), C(3), and C(6), respectively. The peaks at δ (C) 135.1, 150.7, and 120.2 were assigned to quaternary vinylic C-atoms, C(5), C(24), and C(25), respectively, and the signal at $\delta(C)$ 80.9 was attributed to C(22). The resonance at $\delta(C)$ 78.2 was assigned to an oxygenated quaternary C-atom, C(20). The signals appearing at δ (C) 20.0, 18.2, 19.4, 20.2, and 12.1 were assigned to Me(18), Me(19), Me(21), Me(27), and Me(28), respectively.

	1		2		3	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
C(1)	_	203.1	_	203.5	_	204.1
H–C(2)	5.76 (dd, J(2,3) = 9.8, J(2,4a) = 2.0)	127.0	5.74–5.79 (<i>m</i>)	126.9	5.75 $(dd, J(2,3)=9.5, J(2,4a)=2.5)$	127.4
H–C(3)	6.88 (ddd, J(3,2)=9.8, J(3,4b)=4.7, J(3,4a)=2.4)	146.4	6.88 (ddd, J(3,2) = 9.8, J(3,4b) = 4.9, J(3,4a) = 2.2)	146.5	6.86 (ddd, J(3,2) = 10.1, J(3,4b) = 5.0, J(3,4a) = 2.5)	146.8
$H_a - C(4)$	3.28 (br. d, J(4a 4b) = 21.4)	32.9	2.23–3.31 <i>(m)</i>	32.8	2.22-3.31 <i>(m)</i>	33.3
H _b -C(4)	$\begin{array}{l} 2.83 \ (dd, \\ J(4b,4a) = 21.4, \\ J(4b,3) = 4.8) \end{array}$	-	2.83 $(dd, J(4b,4a)=21.6, J(4b,3)=4.7)$	-	2.82 (dd , J(4b,4a)=21.8, J(4b,3)=5.0)	-
C(5)	-	135.1	_	135.2	-	135.8
H–C(6)	5.57 (d, J(6,7a) = 5.2)	125.1	5.56 - 5.60 (m)	124.7	5.56–5.59 (<i>m</i>)	124.8
$H_a - C(7)$	1.99-2.04(m)	25.5	2.00-2.07(m)	25.1	1.96 - 2.01 (m)	24.8
$H_b-C(7)$	1.91 - 1.99(m)	-	1.70 - 1.75(m)	-	1.67 - 1.74(m)	_
H–C(8)	1.98 - 2.06 (m)	32.9	1.68 - 1.74 (m)	36.6	2.02 - 2.10 (m)	35.9
H–C(9)	2.09 - 2.17 (m)	35.2	2.02-2.15 (<i>m</i>)	35.2	1.71 - 1.78 (m)	36.2
C(10)	-	50.3	_	50.1	-	51.5
H _a -C(11)	2.06 (qd, (1111 + 111))	22.7	2.00–2.07 (<i>m</i>)	22.8	2.02–2.08 (<i>m</i>)	22.2
	J(116,9) = J(116,11a) = J(116,12a) = 13.4, J(116,12b) = 4.7)					
H _b -C(11)	1.53 (d, U(11a 11b) = 15.6)	-	1.47–1.53 <i>(m)</i>	-	1.49–1.54 <i>(m)</i>	-
H = C(12)	2.23 (td. J(12a.12b) =	31.7	1.13–1.19 (td.	30.1	2.13 - 2.19(m)	27.1
	J(12a,11b) = 11.8, J(12a,11a) = 4.0)	0117	J(12a,12b) = J(12a,11b) = 12.0, J(12a,11a) = 4.5)	2011	2.110 2.113 (117)	2,11
$H_{b}-C(12)$	1.10 - 1.17 (m)	_	1.13 - 1.21 (m)	_	1.39 - 1.44 (m)	_
C(13)	-	53.1	-	53.7	-	50.6
14-OH	5.77 (s)	82.1	5.76 (s)	81.4	a)	85.3
$H_{a}-C(15)$	3.65 (d, J(15, 16a) = 5.8)	74.5	1.32 - 1.40 (m)	31.9	1.64 - 1.71 (m)	32.9
$H_{b} - C(15)^{b}$	4.60 (br. s)	_	1.52 - 1.60 (m)	_	1.44 - 1.51 (m)	_
H _a -C(16)	2.72 (dd,	46.4	2.32 - 2.39(m)	35.7	2.67 (ddd,	33.6
	J(16a, 16b) = 15.5,				J(16a, 16b) = 14.2,	
	J(16a,15) = 6.6)				J(16a,15a) = 11.7, I(16a,15b) = 1.0)	
$H_{b}-C(16)$	1.56(d,	_	1.49–1.55 <i>(m)</i>	_	J(16a,15b) = 1.9) 1.74–1.81 (<i>m</i>)	_
	J(16b, 16a) = 15.6)					
17-OH	4.60 (br. s)	88.0	4.64 (s)	87.3	a)	87.8
Me(18)	1.22 (s)	20.0	1.00(s)	20.3	1.02 (s)	18.3
Me(19)	1.15 (s)	18.2	1.14(s)	18.3	1.15 (s)	18.7
20-OH	6.65(s)	78.2	6.85 (s)	78.1	a)	77.0
Me(21)	1.22(s)	19.4	1.20 - 1.26 (m)	19.1	1.16 (s)	19.7
H–C(22)	4.68 (<i>dd</i> ,	80.9	4.65 (dd, J(22,23a) = 12.7,	81.0	4.53 (<i>dd</i> ,	80.1
. /	J(22,23a) = 12.7, J(22,23b) = 3.2)		J(22,23b) = 3.6)		J(22,23a) = 12.9, J(22,23b) = 3.5)	

Table. ¹ <i>H</i> - and ¹³ <i>C</i> - <i>NMR</i> Data of 1 - 3 . In (D ₆)DMSO (1 , 2) or (D ₆)DMSO/CD ₃ OD 9 : 1 Solution (3). δ in ppm, <i>J</i> in
Hz; ergostane atom numbering.

	1		2		3	
	δ(H)	$\delta(C)$	δ(H)	$\delta(C)$	δ(H)	$\delta(C)$
H _a -C(23)	2.49 (br. d , J(23a,23b) = 16.0)	34.3	2.35–2.50 (<i>m</i>)	34.3	2.28–2.35 <i>(m)</i>	31.6
$H_{b}-C(23)$	2.35 - 2.42 (m)	_	2.35 - 2.50 (m)	_	2.41–2.49 (<i>m</i>)	-
C(24)	-	150.7	-	150.7	-	151.1
C(25)	-	120.2	-	120.1	-	120.3
C(26)	-	165.9	-	165.9	-	166.4
Me(27)	1.88(s)	20.2	1.85 (s)	20.2	1.88(s)	20.2
Me(28)	1.75(s)	12.1	1.72(s)	12.1	1.73(s)	12.1

The ¹H,¹H-COSY, NOESY, HSQC, and HMBC spectra allowed us to determine the molecular structure of compound **1**. However, because HMBC data are often compatible with structures where carbon pairs are inverted, ADEQUATE experiments were carried out (*Fig.*) [11], which are based on the low natural abundance of directly-bound pairs of ¹³C, to unequivocally confirm the structure. The close resemblance of the ¹³C-NMR chemical shifts of rings *C* and *D* in **1** with those of coagulin H [12] was a strong indication that, indeed, the two products differed only in ring *B*. The β -configuration of the OH group at C(14) was excluded since the ¹³C-NMR chemical shifts of known compounds [13–15] with β -configuration were significantly different at C(8), C(14), C(16), and C(18). The α -orientation of the 14-OH group was also supported by an NOE observed with H_a–C(12). Similarly, the α -configuration of the 17-OH group could be excluded because the ¹³C-NMR chemical shifts for C(12), C(13), C(18), C(21), and C(22) were not well-correlated with those reported in the literature [16][17]. Finally, NOE due to contacts between CH₂(12), H–C(22), and CH₂(23) would not be possible if the side chain was β -oriented.

All known 15-hydroxylated withanolides are α -configured [12][14][15]. The scalar coupling constant ${}^{3}J(15,16)$, with a value of 6 Hz, was taken as a clear indication of the

T 11 (

Figure. Key 1,1-ADEQUATE (-) and NOE (\leftrightarrow) correlations of 1

a-configuration of the 15-OH group [12][13]. Further, an NOE between H–C(8) and H–C(15), both lying above the molecular plane (β), confirmed that the 15-OH function was α -oriented. The configuration at C(22) was determined as (*R*), *i.e.*, the natural configuration in ergostanes, since H–C(22) was found to be a double *doublet* with two coupling constants, which is characteristic for axial–axial and axial–equatorial interactions with CH₂(23) [18].

The IR, UV, ¹H-NMR, and ¹³C-NMR data of compound **2** were very similar to those of **1**, the only difference being the absence of the 15-OH group. The molecular skeleton was easily assembled by means of COSY and HMBC spectra. The configuration of **2** was based on the very close match of ¹³C-NMR chemical shifts with literature data of compounds carrying α - and β -OH groups at C(14) and C(17), respectively [12][16–20]. Compound **2** had been isolated previously from *W. somnifera* growing in Israel, and named withanolide F [19]. However, this is the first report of its isolation from *W. adpressa*.

A set of classical NMR experiments, including ¹H-NMR, DQF-COSY, {¹H}¹³C, DEPT-135, HSQC, and HMBC, allowed us to identify compound **3** as withanolide J [17]. The ¹H,¹H-COSY data and ¹H,¹³C-NMR correlations for **3** were identical with those of withanolide F (**2**). The pattern of differences in ¹³C-NMR chemical shifts between the two withanolides demonstrated that they were 17-epimers [21]. Moreover, both the ¹H- and ¹³C-NMR data of compound **3** successfully passed the test for the determination of the chirality at C(17) developed by *Kirson* and *Gottlieb* [16] for a pair of molecules that only differ from ours in a 5β , 6β -epoxide instead of a C(5)= C(6) function. Finally, compound **3** was identified as withanolide J by comparison of its ¹³C-NMR data with those published earlier [17].

Oleanolic acid, a pentacyclic triterpenoid sapogenin, was isolated for the first time from the genus *Withania*. It was characterized by comparison of its physical and spectroscopic (¹H-, ¹³C-NMR, DQF-COSY, DEPT-135, HSQC, HMBC) data with those published in the literature [22], and by comparison with an authentic sample.

We thank *André Pinto* for performing most NMR experiments and for spectrometer management. The ADEQUATE experiment was run on the 600-MHz spectrometer located at EPFL, Lausanne, in the frame of the inter-university program 'spectromètre à haut champ d'intérêt romand'.

Experimental Part

General. Thin-layer chromatography (TLC): pre-coated silica gel 60 F_{254} plates (Merck), visualization under UV light and by spraying with Dragendorff's reagent. Column chromatography (CC): regular silica gel (63–200 µm) or reverse-phase (RP) silica gel (40–63 µm), Lobar Lichroprep RP-18 (Merck) and SymetryPrep RP-18 (150×19 mm i.d.; Waters). Melting points (m.p.): Mettler FP800 apparatus; uncorrected. Optical rotations: Perkin-Elmer 241-MC polarimeter. IR Spectra: Perkin-Elmer Spectrum-One-B FT-IR spectrometer, with KBr pellets; in cm⁻¹. UV Spectra: λ_{max} (log ε) in nm. NMR Spectra: Bruker DRX-500 apparatus, at 500 (¹H) or 125 MHz (¹³C), or Bruker DRX-600 apparatus equipped with a low-temperature detection coil optimized for ¹H detection, at 600 (¹H) or 150 MHz (¹³C); δ in ppm rel. to Me₄Si, J in Hz. HR-ESI- and APCI-MS: QStar XL-TOF and MAT-LCQ mass spectrometers, resp., in m/z.

Plant Material. The leaves of *Withania adpressa* Coss. were collected in the South of Morocco, April 2003. The plant was authenticated by Dr. *Aziz Abbad*, Department of Biology, Cadi Ayyad University, Morocco. A voucher specimen (No Mar4223) was deposited at the Herbarium of the Botany Department, Faculty of Sciences-Semlalia, Marrakech, Morocco.

Extraction and Isolation. The dried and powdered leaves (3 kg) of *W. adpressa* were successively extracted with hexane and MeOH (12.5 l each) in a *Soxhlet* apparatus. After solvent evaporation, the methanolic residue (390 g) was suspended in H₂O (500 ml) and extracted with CH₂Cl₂ (5×500 ml). The CH₂Cl₂-soluble fraction (15 g) was subjected to CC (SiO₂; CH₂Cl₂/MeOH 100 : 0 \rightarrow 0 : 100) to afford nine fractions: *Fr. 1–9. Fr. 3* (800 mg) was further subjected to CC (1. *LichroPrep*; MeCN/H₂O 10 : 90 \rightarrow 100 : 0; 2. *SymetryPrep*; MeCN/H₂O 4 : 6) to afford **1** (80 mg). *Fr. 2* (350 mg) was purified by CC (*Lichroprep*; MeCN/H₂O 5 : 95 \rightarrow 100 : 0) to afford eight fractions: *Fr. 2.1* to 2.8. *Fr. 2.7* afforded **2** (57 mg). *Fr. 1* (1.5 g) was resubjected to CC (*Lichroprep*; MeCN/H₂O 10 : 90 \rightarrow 100 : 0), which gave 62 fractions (*Fr. 1.1* to 1.62). *Fr. 1.12* yielded withanolide J (180 mg), and *Fr. 1.61* afforded oleanolic acid (210 mg).

(15S,17S)-14,15,17,20-Tetrahydroxy-22,26-epoxyergosta-2,5,24-triene-1,26-dione (1). Colorless solid. M.p. 182–185°. $[\alpha]_{25}^{D}$ = +103.3 (c = 1, MeOH). UV (MeOH): 222 (4.24). IR (KBr): 3416, 2978, 2942, 1685, 1660, 1450, 1389, 1296, 1143, 1093, 1026, 1001. ¹H- and ¹³C-NMR: see *Table*. HR-ESI-MS: 509.2517 ([*M*+Na]⁺, C₂₈H₃₈NaO₇⁺; calc. 509.2516).

Withanolide F (=(17S)-14,17,20-Trihydroxy-22,26-epoxyergosta-2,5,24-triene-1,26-dione; **2**). Colorless solid. M.p. 159–160°. $[\alpha]_{D}^{25} = +205.1 \ (c=1, \text{ MeOH}). \text{ UV (MeOH}): 226 \ (4.23). \text{ IR (KBr}): 3424, 2955, 2877, 1686, 1452, 1388, 1322, 1283, 1141, 1092, 1024, 1001. ¹H- and ¹³C-NMR: see$ *Table* $. HR-ESI-MS: 493.2583 (<math>[M+Na]^+$, $C_{28}H_{38}NaO_6^+$; calc. 493.2567).

Withanolide J (= (17R) - 14, 17, 20-Trihydroxy-22,26-epoxyergosta-2,5,24-triene-1,26-dione; **3**). Colorless solid. M.p. 180°. $[a]_{D}^{25} = +316.6 (c=1, MeOH)$. UV (MeOH): 226 (4.26). IR (KBr): 3426, 2970, 2876, 1683, 1663, 1456, 1410, 1385, 1321, 1139. ¹H- and ¹³C-NMR: see *Table*. HR-ESI-MS: 493.2599 ($[M+Na]^+$, $C_{28}H_{38}NaO_6^+$; calc. 493.2567).

REFERENCES

- J. Fuska, A. Fuskowa, J. P. Rosazza, A. W. Nicholas, *Neoplasma* 1984, *31*, 31; S. Minguzzi, L. E. Barata, Y. G. Shin, P. F. Jonas, H. B. Chai, E. J. Park, J. M. Pezzuto, G. A. Cordell, *Phytochemistry* 2002, 59, 635.
- [2] B. Jayaprakasam, Y. Zhang, P. S. Navindra, G. N. Muraleedharan, *Life Sci.* 2003, 74, 125; S. Mathur, P. Kaur, M. Sharma, A. Katyal, B. Singh, M. Tiwari, R. Chandra, *Phytomedicine* 2004, 11, 452; R. Mathur, S. K. Gupta, N. Singh, S. Mathur, V. Kochupillai, T. Velpandian, *J. Ethnopharmacol.* 2006, 105, 336.
- [3] B. Shohat, I. Kirson, D. Lavie, *Biomedicine* 1978, 28, 18; J. G. Luis, F. Echeverri, F. Garcia, M. Rojas, *Planta Med.* 1994, 60, 348; M. A. Mesaik, Z. Ul-Haq, S. Murad, Z. Ismail, N. R. Abdullah, H. K. Gill, Atta-ur-Rahman, M. Yousaf, R. A. Siddiqui, A. Ahmad, M. I. Choudhary, *Mol. Immunol.* 2006, 43, 1855.
- [4] B. Singh, B. K. Chandan, D. K. Gupta, Phytother. Res. 2003, 17, 531.
- [5] G. Mareggiani, M. I. Picollo, E. Zerba, G. Burton, M. C. Tettamanzi, M. O. V. Benedetti-Doctorovich, A. S. Veleiro, J. Nat. Prod. 2000, 63, 1113.
- [6] A. Benabid, 'Flore et écosystèmes du Maroc: évaluation et présentation de la biodiversité', Ibis Press, 2001.
- [7] F. N. Hepper, in 'Solanaceae III: Taxonomy, Chemistry, Evolution', Eds J. G. Hawkes, R. N. Lester, M. Nee, N. Estrada, The Royal Botanic Gardens, Kew, Richmond, 1991, p. 211.
- [8] D. Lavie, E. Glotter, Y. Shvo, J. Org. Chem. 1965, 30, 1774.
- [9] J. R. Dyer, 'Applications of Absorption Spectroscopy of Organic Compounds', Ed. K. L. Rinehart, Prentice-Hall, Englewood Cliffs, 1965.
- [10] A. K. Kalla, M. L. Raina, K. L. Dhar, M. A. Qurishi, G. Snatzke, Phytochemistry 1979, 18, 637.
- [11] B. Reif, M. Kock, R. Kerssebaum, H. Kang, W. Fenical, C. Griesinger, J. Magn. Reson., Ser. A 1996, 118, 282.

- [12] Atta-ur-Rahman, M. Yousaf, W. Gul, S. Qureshi, M. I. Choudhary, W. Voelter, A. Hoff, F. Jens, A. Naz, *Heterocycles* 1998, 48, 1801.
- [13] E. Glotter, S. Mahendra, I. Kirson, H. E. Gottlieb, J. Chem. Soc., Perkin Trans. 1 1985, 2241.
- [14] S. Ahmad, A. Malik, R. Yasmin, N. Ullah, W. Gul, P. M. Khan, H. R. Nawaz, N. Afza, Phytochemistry 1999, 50, 647.
- [15] S. Nagafuji, H. Okabe, H. Akahane, F. Abe, Biol. Pharm. Bull. 2004, 27, 193.
- [16] I. Kirson, H. E. Gottlieb, J. Chem. Res., Synop. 1980, 338.
- [17] H. E. Gottlieb, I. Kirson, Org. Magn. Reson. 1981, 16, 20.
- [18] A. M. Abou-Douh, Arch. Pharm. (Weinheim) 2002, 335, 267.
- [19] E. Glotter, A. Abraham, G. Günzberg, I. Kirson, J. Chem. Soc., Perkin Trans. 1 1977, 341.
- [20] V. Vande Velde, D. Lavie, R. D. Budhiraja, S. Sudhir, K. N. Garg, Phytochemistry 1983, 22, 2253.
- [21] H. R. Nawaz, A. Malik, P. M. Khan, S. Ahmad, Phytochemistry 1999, 52, 1357.
- [22] W. Seebacher, N. Simic, R. Weis, R. Saf, O. Kunert, Magn. Reson. Chem. 2003, 41, 636.

Received November 17, 2006